Improving Deep Learning using Generic Data Augmentation
نویسندگان
چکیده
Deep artificial neural networks require a large corpus of training data in order to effectively learn, where collection of such training data is often expensive and laborious. Data augmentation overcomes this issue by artificially inflating the training set with label preserving transformations. Recently there has been extensive use of generic data augmentation to improve Convolutional Neural Network (CNN) task performance. This study benchmarks various popular data augmentation schemes to allow researchers to make informed decisions as to which training methods are most appropriate for their data sets. Various geometric and photometric schemes are evaluated on a coarse-grained data set using a relatively simple CNN. Experimental results, run using 4-fold cross-validation and reported in terms of Top-1 and Top-5 accuracy, indicate that cropping in geometric augmentation significantly increases CNN task performance.
منابع مشابه
Transfer Incremental Learning Using Data Augmentation
Due to catastrophic forgetting, deep learning remains highly inappropriate when facing incremental learning of new classes and examples over time. In this contribution, we introduce Transfer Incremental Learning using Data Augmentation (TILDA). TILDA combines transfer learning from a pre-trained Deep Neural Network (DNN) as feature extractor, a Nearest Class Mean (NCM) inspired classifier and m...
متن کاملLearning Deep Generative Models with Doubly Stochastic MCMC
We present doubly stochastic gradient MCMC, a simple and generic method for (approximate) Bayesian inference of deep generative models in the collapsed continuous parameter space. At each MCMC sampling step, the algorithm randomly draws a minibatch of data samples to estimate the gradient of log-posterior and further estimates the intractable expectation over latent variables via a Gibbs sample...
متن کاملData Augmentation for Plant Classification
Data augmentation plays a crucial role in increasing the number of training images, which often aids to improve classification performances of deep learning techniques for computer vision problems. In this paper, we employ the deep learning framework and determine the effects of several data-augmentation (DA) techniques for plant classification problems. For this, we use two convolutional neura...
متن کاملMusic Transcription by Deep Learning with Data and "Artificial Semantic" Augmentation
In this progress paper the previous results of the single note recognition by deep learning are presented. The several ways for data augmentation and “artificial semantic” augmentation are proposed to enhance efficiency of deep learning approaches for monophonic and polyphonic note recognition by increase of dimensions of training data, their lossless and lossy transformations.
متن کاملDigital surface model extraction with high details using single high resolution satellite image and SRTM global DEM based on deep learning
The digital surface model (DSM) is an important product in the field of photogrammetry and remote sensing and has variety of applications in this field. Existed techniques require more than one image for DSM extraction and in this paper it is tried to investigate and analyze the probability of DSM extraction from a single satellite image. In this regard, an algorithm based on deep convolutional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1708.06020 شماره
صفحات -
تاریخ انتشار 2017